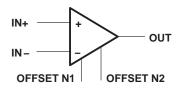
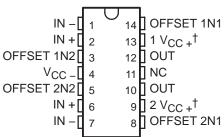
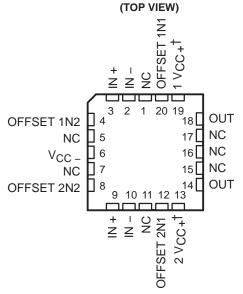
- No Frequency Compensation Required
- Low Power Consumption
- Short-Circuit Protection
- Offset-Voltage Null Capability
- Wide Common-Mode and Differential Voltage Ranges
- No Latch-Up
- Designed to Be Interchangeable With Fairchild μA747C and μA747M


description

The uA747 is a dual general-purpose operational amplifier featuring offset-voltage null capability. Each half is electrically similar to uA741.


The high common-mode input voltage range and the absence of latch-up make this amplifier ideal for voltage-follower applications. The device is short-circuit protected and the internal frequency compensation ensures stability without external components. A low-value potentiometer may be connected between the offset null inputs to null out the offset voltage as shown in Figure 2.

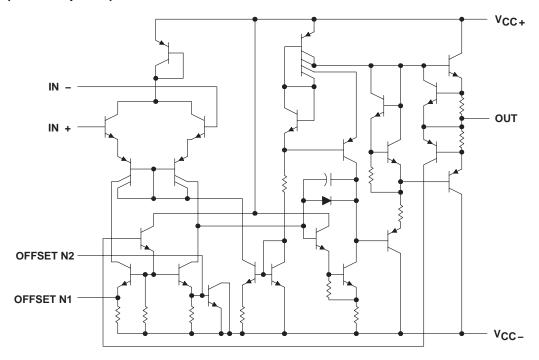
The uA747C is characterized for operation from 0° C to 70° C; the uA747M is characterized for operation over the full military temperature range of -55° C to 125° C.


symbol (each amplifier)

D, J, N, OR W PACKAGE (TOP VIEW)

uA747m ... FK PACKAGE

NC - No internal connection


 † The two positive supply terminals (1 V_{CC +} and 2 V_{CC +}) are connected together internally.

AVAILABLE OPTIONS

	V. May		20-PIN			
TA	V _{IO} Max AT 25°C	SMALL OUTLINE (D)	CERAMIC DIP (J)	PLASTIC DIP (N)	FLAT PACK (W)	CHIP CARRIER (FK)
0°C						
to 70°C	6 mV	uA747CD	_	uA747CN	_	_
–55°C						
to 125°C	5 mV	_	uA747MJ	_	uA747MW	uA747MFK

The D package is available taped and reeled. Add the suffix R to the device type, (i.e., uA747CDR).

schematic (each amplifier)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

		uA747C	uA747M	UNIT	
Supply voltage, V _{CC+} (see Note 1)	18	22	V		
Supply voltage, V _{CC} (see Note 1)		-18	-22	V	
Differential input voltage (see Note 2)		±30	±30	V	
Input voltage any input (see Notes 1 and 3)		±15	±15	V	
Voltage between any offset null terminal (N1/N2) and V _{CC} _	±0.5	±0.5	V		
Duration of output short circuit (see Note 4)		unlimited	unlimited		
Continuous total dissipation		See Dissipation Rating Table			
Operating free-air temperature range		0 to 70	-55 to 125	°C	
Storage temperature range		-65 to 150	-65 to 150	°C	
Case temperature for 60 seconds		260	°C		
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds	J or W package		300	°C	
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260		°C		

- NOTES: 1. All voltage values, unless otherwise noted, are with respect to the midpoint between V_{CC} + and V_{CC} -.
 - 2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
 - 3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less.
 - 4. The output may be shorted to ground or either power supply. For the uA747M only, the unlimited duration of the short circuit applies at (or below) 125°C case temperature or 75°C free-air temperature.

DISSIPATION RATING TABLE

PACKAGE	$T_{\mbox{A}} \le 25^{\circ}\mbox{C}$ POWER RATING	DERATING FACTOR	DERATE ABOVE T _A	T _A = 70°C POWER RATING	T _A = 125°C POWER RATING
D	800 mW	7.6 mW/°C	45°C	608 mW	_
FK	800 mW	11.0 mW/°C	77°C	800 mW	275 mW
J	800 mW	11.0 mW/°C	77°C	800 mW	275 mW
N	800 mW	9.2 mW/°C	63°C	736 mW	_
W	800 mW	8.0 mW/°C	50°C	640 mW	200 mW

SLOS009A - D971, FEBRUARY 1971 - REVISED OCTOBER 1990

electrical characteristics at specified free-air temperature, $V_{\mbox{CC}\pm}$ = $\pm 15~\mbox{V}$

	DADAMETED		T. T	ι	uA747C			uA747M		
	PARAMETER	TEST CONDITIONS†	T _A ‡	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
V	Innut offset valtage	V- 0	25°C		1	6		1	5	mV
V _{IO}	Input offset voltage	V _O = 0	Full range			7.5			6	mv
ΔVIO(adj)	Offset voltage adjust range		25°C		±15			±15		mV
	lanut effect coment		25°C		20	200		20	200	nA
lio	Input offset current		Full range			300			500	IIA
1	Innut high current		25°C		80	500		80	500	Λ
IB	Input bias current		Full range			800			1500	nA
V	Common-mode		25°C	±12	±13		±12	±13		V
VICR	input voltage range		Full range	±12			±12			V
		R _L = 10 kΩ	25°C	24	28		24	28		
V	Maximum peak-to-peak	$R_L \ge 10 \text{ k}\Omega$	Full range	24			24			V
V _{O(PP)}	output voltage swing	R _L = 2 kΩ	25°C	20	26		20	26		
		$R_L \ge 2 k\Omega$	Full range	20			20			
^	Large-signal differential	$R_L \ge 2 k\Omega$,	25°C	25	200		50	200		\//\/
A_{VD}	voltage amplification	$V_0 = \pm 10 \text{ V}$	Full range	15			25			V/mV
rį	Input resistance		25°C	0.3	2		0.3*	2		MΩ
r _o	Output resistance	See Note 5	25°C		75			75		Ω
Ci	Input capacitance		25°C		1.4			1.4		pF
CMRR	Common-mode	Vi Vi	25°C	70	90		70	90		dB
CIVIKK	rejection ratio	V _{IC} = V _{ICR}	Full range	70			70			uБ
ksvs	Supply-voltage sensitivity	V _{CC} = ± 9 V to ± 15 V	25°C		30	150		30	150	μV/V
342	(ΔV _{IO} / ΔV _{CC})		Full range			150			150	μ
IOS	Short-circuit output current		25°C		±25	±40		±25	±40	mA
	Supply current	No lood	25°C		1.7	2.8		1.7	2.8	mA
Icc	(each amplifier)	No load	Full range			3.3			3.3	
D-	Power dissipation	No load Va O	25°C		50	85		50	85	\A/
PD	(each amplifier)	No load, $V_O = 0$	Full range			100			100	mW
V ₀₁ /V ₀₂	Channel separation		25°C		120			120	0	dB

[†] All characteristics are measured under open-loop conditions with zero common-mode input voltage unless otherwise specified.

operating characteristics, V_{CC \pm} = \pm 15 V, T_A = 25°C

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _r	Rise time	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		0.3		μs
	Overshoot factor	$V_I = 20 \text{ mV}, R_L = 2 \text{ k}\Omega, C_L = 100 \text{ pF}, \text{ See Figure 1}$		5%		
SR	Slew rate at unity gain	$V_I = 10 \text{ mV}, R_L = 2 \text{ k}\Omega, C_L = 100 \text{ pF}, \text{ See Figure 1}$		0.5		V/μs

 $[\]ddagger$ Full range for uA747C is 0°C to 70°C and for uA747M is -55°C to 125°C.

^{*}On products compliant to MIL-STD-883, Class B, this parameter is not production tested.

NOTE 5: This typical value applies only at frequencies above a few hundred hertz because of the effects of drift and thermal feedback.

SLOS009A - D971, FEBRUARY 1971 - REVISED OCTOBER 1990

PARAMETER MEASUREMENT INFORMATION

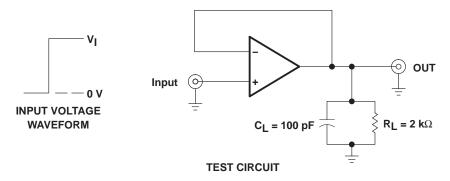


Figure 1. Rise Time, Overshoot, and Slew Rate

APPLICATION INFORMATION

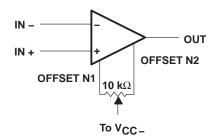


Figure 2. Input Offset Voltage Null Circuit

TYPICAL CHARACTERISTICS[†]

INPUT OFFSET CURRENT vs

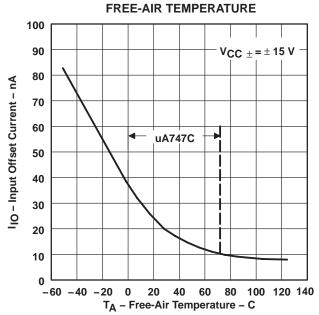


Figure 3

INPUT BIAS CURRENT

vs FREE-AIR TEMPERATURE

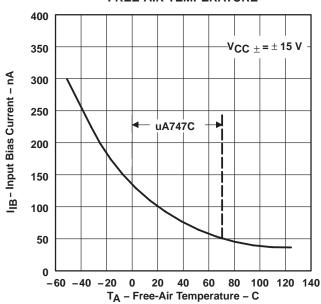


Figure 4

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature range of the particular devices.

TYPICAL CHARACTERISTICS

4

100

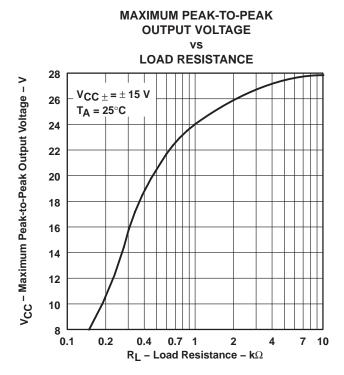
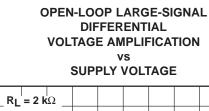



Figure 5

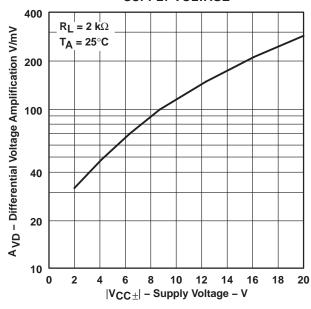


Figure 7

OUTPUT VOLTAGE FREQUENCY 40 VO(PP) - Maximum Peak-to-Peak Output Voltage - V V_{CC±} = ± 15 V 36 $R_L = 10 \text{ k}\Omega$ $T_A = 25^{\circ}\text{C}$ 32 28 24 20 16 12 8

MAXIMUM PEAK-TO-PEAK

Figure 6

OPEN-LOOP LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION

10 k

f - Frequency - Hz

100 k

1 M

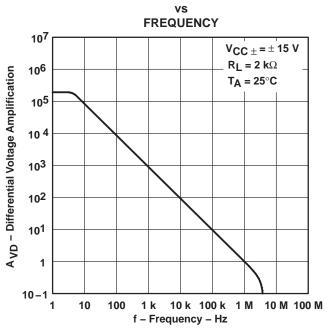
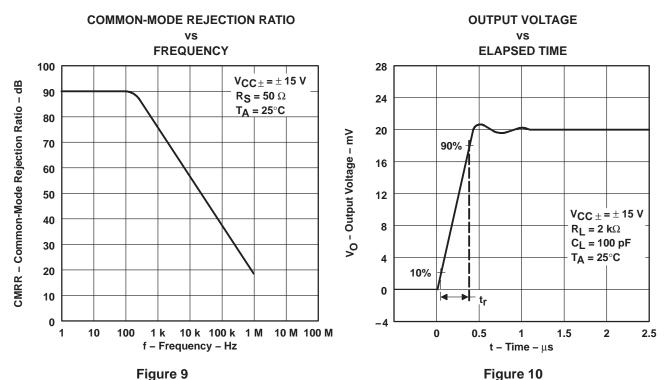
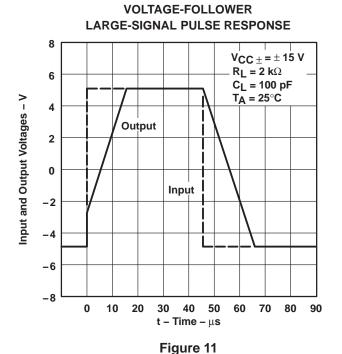




Figure 8

TYPICAL CHARACTERISTICS

PACKAGE OPTION ADDENDUM

24-Aug-2018

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	_		Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
UA747CN	ACTIVE	PDIP	N	14	25	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type	0 to 70	UA747CN	Samples
UA747CNE4	ACTIVE	PDIP	N	14	25	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type	0 to 70	UA747CN	Samples
UA747CNE4	ACTIVE	PDIP	N	14	25	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type	0 to 70	UA747CN	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

PACKAGE OPTION ADDENDUM

24-Aug-2018

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.